A polynomial in x whose roots are

^{4}/_{3}and –^{3}/_{5}is-
**A.**

15x^{2}– 11x – 12 -
**B.**

15x^{2}+ 11x – 12 -
**C.**

12x^{2}– x – 12 -
**D.**

12x^{2}+ 11x – 15

##### Correct Answer: Option A

##### Explanation

If ^{4}/_{3} and –^{3}/_{5} are roots of a polynomial

Imply x = ^{4}/_{3} and – ^{3}/_{5}

3x = 4 and 5x = -3

∴3x-4 = 0 and 5x+3 = 0 are factors

(3x-4)(5x+3) = 0 product of the factors

15x^{2} + 9x – 20x – 12 = 0 By expansion

15x^{2} – 11x – 12 = 0